The hippocampus is believed to be an important region for spatial navigation, helping to represent the environment and plan routes. Evidence from rodents has suggested that the hippocampus processes information in a graded manner along its long-axis, with anterior regions encoding coarse information and posterior regions encoding fine-grained information. Brunec et al. (2018) demonstrated similar patterns in humans in a navigation paradigm, showing that the anterior-posterior gradient in representational granularity and the rate of signal change exist in the human hippocampus. However, the stability of these signals and their relationship to navigational performance remain unclear. In this study, we conducted a two-week training program where participants learned to navigate through a novel city environment. We investigated inter-voxel similarity (IVS) and temporal auto-correlation hippocampal signals, measures of representational granularity and signal change, respectively. Specifically, we investigated how these signals were influenced by navigational ability (i.e., stronger vs. weaker spatial learners), training session, and navigational dynamics. Our results revealed that stronger learners exhibited a clear anterior-posterior distinction in IVS in the right hippocampus, while weaker learners showed less pronounced distinctions. Additionally, lower general IVS levels in the hippocampus were linked to better early learning. Successful navigation was characterized by faster signal change, particularly in the anterior hippocampus, whereas failed navigation lacked the anterior-posterior distinction in signal change. These findings suggest that signal complexity and signal change in the hippocampus are important factors for successful navigation, with IVS representing information organization and auto-correlation reflecting moment-to-moment updating. These findings support the idea that efficient organization of scales of representation in an environment may be necessary for efficient navigation itself. Understanding the dynamics of these neural signals provides insights into the mechanisms underlying navigational learning in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996673 | PMC |
http://dx.doi.org/10.1101/2024.03.27.587026 | DOI Listing |
Neurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.
View Article and Find Full Text PDFBMC Genomics
January 2025
Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.
View Article and Find Full Text PDFZhongguo Fei Ai Za Zhi
November 2024
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.
View Article and Find Full Text PDFNeurosciences (Riyadh)
January 2025
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!