A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

QuATON: Quantization Aware Training of Optical Neurons. | LitMetric

Optical processors, built with "optical neurons", can efficiently perform high-dimensional linear operations at the speed of light. Thus they are a promising avenue to accelerate large-scale linear computations. With the current advances in micro-fabrication, such optical processors can now be 3D fabricated, but with a limited precision. This limitation translates to quantization of learnable parameters in optical neurons, and should be handled during the design of the optical processor in order to avoid a model mismatch. Specifically, optical neurons should be trained or designed within the physical-constraints at a predefined quantized precision level. To address this critical issues we propose a physics-informed quantization-aware training framework. Our approach accounts for physical constraints during the training process, leading to robust designs. We demonstrate that our approach can design state of the art optical processors using diffractive networks for multiple physics based tasks despite quantized learnable parameters. We thus lay the foundation upon which improved optical processors may be 3D fabricated in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996779PMC
http://dx.doi.org/10.21203/rs.3.rs-4076842/v1DOI Listing

Publication Analysis

Top Keywords

optical processors
16
optical neurons
12
optical
8
processors fabricated
8
learnable parameters
8
quaton quantization
4
quantization aware
4
aware training
4
training optical
4
neurons optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!