A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feature evaluation of accelerometry signals for cough detection. | LitMetric

Feature evaluation of accelerometry signals for cough detection.

Front Digit Health

Wearable Technologies Lab, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom.

Published: March 2024

Cough is a common symptom of multiple respiratory diseases, such as asthma and chronic obstructive pulmonary disorder. Various research works targeted cough detection as a means for continuous monitoring of these respiratory health conditions. This has been mainly achieved using sophisticated machine learning or deep learning algorithms fed with audio recordings. In this work, we explore the use of an alternative detection method, since audio can generate privacy and security concerns related to the use of always-on microphones. This study proposes the use of a non-contact tri-axial accelerometer for motion detection to differentiate between cough and non-cough events/movements. A total of 43 time-domain features were extracted from the acquired tri-axial accelerometry signals. These features were evaluated and ranked for their importance using six methods with adjustable conditions, resulting in a total of 11 feature rankings. The ranking methods included model-based feature importance algorithms, first principal component, leave-one-out, permutation, and recursive features elimination (RFE). The ranking results were further used in the feature selection of the top 10, 20, and 30 for use in cough detection. A total of 68 classification models using a simple logistic regression classifier are reported, using two approaches for data splitting: subject-record-split and leave-one-subject-out (LOSO). The best-performing model out of the 34 using subject-record-split obtained an accuracy of 92.20%, sensitivity of 90.87%, specificity of 93.52%, and F1 score of 92.09% using only 20 features selected by the RFE method. The best-performing model out of the 34 using LOSO obtained an accuracy of 89.57%, sensitivity of 85.71%, specificity of 93.43%, and F1 score of 88.72% using only 10 features selected by the RFE method. These results demonstrate the ability for future implementation of a motion-based wearable cough detector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995234PMC
http://dx.doi.org/10.3389/fdgth.2024.1368574DOI Listing

Publication Analysis

Top Keywords

cough detection
12
accelerometry signals
8
best-performing model
8
features selected
8
selected rfe
8
rfe method
8
cough
6
detection
5
features
5
feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!