In situ conversion technology is a green and effective way to realize the development of organic-rich shale. Supercritical CO can be used as a good heating medium for shale in situ conversion. Numerical simulation is an important means to explore the shale in situ conversion process, but it requires a lot of time and computational cost for in situ conversion simulation under different working conditions. Therefore, a computational framework for rapid prediction of shale in situ conversion development performance and heating parameter optimization is proposed by coupling artificial neural network (ANN) and particle swarm optimization (PSO). The results indicated that kerogen pyrolysis and hydrocarbon product release mainly occurred within 2 years of shale in situ conversion. The production curves of pyrolysis hydrocarbon obviously slowed after in situ conversion for 2 years. The database was constructed by a large number of in situ conversion simulations, and Pearson correlation analysis and the random forest method were adopted to obtain seven main controlling factors affecting reservoir temperature and hydrocarbon production. The determination coefficient of the obtained ANN-based prediction models is higher than 97%, and the mean square error (MSE) is lower than 0.3%. The basic reservoir case can choose to inject 350-450 °C supercritical CO (Sc-CO) fluid with a rate of 600 m/day to obtain a more promising development effect. The heating parameter optimization for three typical reservoir cases using PSO was performed, and reasonable injection temperature and injection rate were obtained. It realized accurate development prediction and rapid heating parameter optimization, which helps the effective application of shale in situ conversion development design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993255 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00323 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
College of Physics, Qingdao University, Qingdao 266071, China. Electronic address:
Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:
Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!