A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Electrochemical and Structural Changes of Phosphorus-Doped TiO through In Situ Raman and In Situ X-Ray Diffraction Analysis. | LitMetric

Doping is a widely employed technique to enhance the functionality of lithium-ion battery materials, tailoring their performance for specific applications. In our study, we employed in situ Raman and in situ X-ray diffraction (XRD) spectroscopic techniques to examine the structural alterations and electrochemical behavior of phosphorus-doped titanium dioxide (TiO) nanoparticles. This investigation revealed several notable changes: an increase in structural defects, enhanced ionic and electronic conductivity, and a reduction in crystallite size. These alterations facilitated higher lithiation rates and led to the first observed appearance of LiTiO in the Raman spectra due to anatase lithiation, resulting in a reversible double-phase transition during the charging and discharging processes. Furthermore, doping with 2, 5, and 10 wt % phosphorus resulted in an initial increase in specific capacity compared to undoped TiO. However, higher doping levels were associated with diminished capacity retention, pinpointing an optimal doping level for phosphorus. These results underscore the critical role of in situ characterization techniques in understanding doping effects, thereby advancing the performance of anode materials, particularly TiO, in lithium-ion batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993275PMC
http://dx.doi.org/10.1021/acsomega.3c08122DOI Listing

Publication Analysis

Top Keywords

situ raman
8
raman situ
8
situ x-ray
8
x-ray diffraction
8
situ
5
doping
5
electrochemical structural
4
structural changes
4
changes phosphorus-doped
4
tio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!