Signal amplification strategies have emerged as a prominent tool in the field of improving the detection sensitivity of small extracellular vesicles (sEVs). It is important to highlight that the utilization of signal quenching strategies is not commonly implemented. A detection technique for sEVs was established based on the unwinding of G-quadruplex using Klenow fragment polymerase (KF), which served as an inspiration for this study. This system is characterized by its simplicity and lack of labeling, making it an efficient approach for signal quenching. In the presence of sEVs, the CD63 aptamer in the capture@sMBs complex binds with the CD63 protein on the surface of sEVs to release trigger sequences, which were employed as a primer to mediate the DNA polymerase/endonuclease-assisted signal recycling. The signal recycling process produces numerous single-stranded DNA sequences that can bind to the toehold section of the G-quadruplex. This leads to the rupture of the G-quadruplex structure and the subsequent deactivation of a DNAzyme generated by the G-quadruplex structure and hemin, thereby inhibiting its biological catalytic function. Consequently, the G-quadruplex structure would undergo a transformation to a duplex structure, leading to the emergence of a discernible differential signal that can be noticed in a majority of instances, even without the aid of magnification devices. The decrease in the prominent signal allows for the efficient analysis of target sEVs, which exhibit a notably low detection limit. In addition to the detection of sEVs, the approach has also been utilized for the investigation of miRNA-21. The approach demonstrates a high level of selectivity and robustness in its capacity to differentiate between target miRNA and base-mismatched miRNA as well as other miRNA families. This statement suggests that the assay holds significant promise for use in biochemical research and clinical diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993355PMC
http://dx.doi.org/10.1021/acsomega.3c09888DOI Listing

Publication Analysis

Top Keywords

signal quenching
12
g-quadruplex structure
12
signal
8
signal recycling
8
sevs
6
detection
5
g-quadruplex
5
label-free sensitive
4
sensitive versatile
4
versatile colorimetric
4

Similar Publications

One Step Visual Homogeneous Immunoassay of a Rheumatoid Arthritis Biomarker in Serum via Target-Regulated Steric Hindrance and Competitive Recognition.

Anal Chem

January 2025

Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Med+X Center for Manufacturing, Department of Rheumatology & Immunology, National Clinical Research Center for Geriatrics, Department of Gynecology of West China Tianfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Homogeneous analysis techniques offer several advantages as alternatives to heterogeneous immunoassays, such as simplicity and rapidity. In this study, a visual homogeneous immunoassay without a labeling process was developed based on target-induced steric hindrance to regulate competitive recognition mechanism. Specifically, as the analyte concentration varies, the change of microenvironment based on steric hindrance could affect the recognition of Cu by signal probes.

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time.

View Article and Find Full Text PDF

(, Hi) is an opportunistic bacterium that colonizes the upper respiratory tract of humans and frequently causes meningitis, pneumonia, sepsis, and other severe infections in children. Early and accurate detection of is essential for effective diagnosis and treatment. In this study, we established a novel diagnostic method by integrating the CRISPR-Cas12a detection platform with multiple cross-displacement amplification (MCDA), termed the Hi-MCDA-CRISPR assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!