Properties and predicted functions of large genes and proteins of apicomplexan parasites.

NAR Genom Bioinform

Department of Internal Medicine, Section of Infectious Diseases, Department of Microbial Pathogenesis and Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA.

Published: June 2024

Evolutionary constraints greatly favor compact genomes that efficiently encode proteins. However, several eukaryotic organisms, including apicomplexan parasites such as ,  and , the causative agents of toxoplasmosis, malaria and babesiosis, respectively, encode very large proteins, exceeding 20 times their average protein size. Although these large proteins represent <1% of the total protein pool and are generally expressed at low levels, their persistence throughout evolution raises important questions about their functions and possible evolutionary pressures to maintain them. In this study, we examined the trends in gene and protein size, function and expression patterns within seven apicomplexan pathogens. Our analysis revealed that certain large proteins in apicomplexan parasites harbor domains potentially important for functions such as antigenic variation, erythrocyte invasion and immune evasion. However, these domains are not limited to or strictly conserved within large proteins. While some of these proteins are predicted to engage in conventional metabolic pathways within these parasites, others fulfill specialized functions for pathogen-host interactions, nutrient acquisition and overall survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993292PMC
http://dx.doi.org/10.1093/nargab/lqae032DOI Listing

Publication Analysis

Top Keywords

apicomplexan parasites
8
large proteins
8
properties predicted
4
predicted functions
4
functions large
4
large genes
4
proteins
4
genes proteins
4
proteins apicomplexan
4
parasites evolutionary
4

Similar Publications

Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite , which severely affects individual animal welfare and profitability in cattle industry. We recently showed that tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear.

View Article and Find Full Text PDF

Morphological and molecular characterization of a Sarcocystis bovifelis-like sarcocyst in American beef.

Parasit Vectors

December 2024

United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Centre, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA.

Background: Parasites in the apicomplexan genus Sarcocystis infect cattle worldwide. Assessing the economic importance of each such parasite species requires proper diagnosis. Sarcocystis cruzi, a thin-walled species, infects virtually all cattle.

View Article and Find Full Text PDF

Development of a molecular assay for the determination of Eimeria tenella oocyst viability.

Parasitol Res

December 2024

Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control.

View Article and Find Full Text PDF

The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.

View Article and Find Full Text PDF

Bending stiffness of Toxoplasma gondii actin filaments.

J Biol Chem

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520. Electronic address:

Article Synopsis
  • Actin is crucial for the Apicomplexan parasite Toxoplasma gondii, supporting key processes like invasion and organelle inheritance, and its unique properties enable rapid treadmilling compared to vertebrate actin.
  • Recent findings suggest that although T. gondii actin (TgAct1) has weaker interactions at its D-loop, this does not significantly impair its bending stiffness or stability, making it similar to vertebrate actin.
  • Structural analysis shows that despite the differences at the D-loop, TgAct1 filaments maintain stabilizing features, indicating a mechanism where weak D-loop interactions affect subunit addition at the ends but not within the filament itself.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!