Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τ=62 μs), satisfactory ISC efficiency (Φ=54.3 %) and powerful reduction capacity [Singlet: E (PC/*PC)=-1.93 eV, Triplet: E (PC/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm) and low catalyst (NI-1) loading (<50 μM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202402774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!