LncRNA HMOX1 alleviates renal ischemia-reperfusion-induced ferroptotic injury via the miR-3587/HMOX1 axis.

Cell Signal

Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, China. Electronic address:

Published: July 2024

Emerging evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in renal ischemia reperfusion (RIR) injury. However, the specific mechanisms by which lncRNAs regulate ferroptosis in renal tubular epithelial cells remain largely unknown. The objective of this study was to investigate the biological function of lncRNA heme oxygenase 1 (lnc-HMOX1) in RIR and its potential molecular mechanism. Our findings demonstrated that the expression of HMOX1-related lnc-HMOX1 was reduced in renal tubular epithelial cells treated with hypoxia-reoxygenation (HR). Furthermore, the over-expression of lnc-HMOX1 mitigated ferroptotic injury in renal tubular epithelial cells in vivo and in vitro. Mechanistically, lnc-HMOX1, as a competitive endogenous RNA (ceRNA), promoted the expression of HMOX1 by sponging miR-3587. Furthermore, the inhibition of HMOX1 effectively impeded the aforementioned effects exerted by lnc-HMOX1. Ultimately, the inhibitory or mimic action of miR-3587 reversed the promoting or refraining influence of silenced or over-expressed lnc-HMOX1 on ferroptotic injury during HR. In summary, our findings contribute to a comprehensive comprehension of the mechanism underlying ferroptotic injury mediated by lnc-HMOX1 during RIR. Significantly, we identified a novel lnc-HMOX1-miR-3587-HMOX1 axis, which holds promise as a potential therapeutic target for RIR injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2024.111165DOI Listing

Publication Analysis

Top Keywords

ferroptotic injury
16
renal tubular
12
tubular epithelial
12
epithelial cells
12
rir injury
8
lnc-hmox1 rir
8
lnc-hmox1
7
injury
6
renal
5
lncrna hmox1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!