Tetracycline exerts an inhibitory effect on anaerobic digestion, inducing stressed microbial activities and even system failure. Continuous-flow reactors (CFRs) and sequencing batch reactors (SBRs) were employed along with the dosage of powdered activated carbon (PAC) to enhance tetracycline removal during anaerobic digestion of complex organic compounds. PAC increased the maximum methane production rate by 15.6% (CFRs) and 13.8% (SBRs), and tetracycline biodegradation by 24.4% (CFRs) and 19.2% (SBRs). CFRs showed higher tetracycline removal and methane production rates than SBRs. Geobacter was enriched in CFRs, where Methanothrix was enriched with the addition of PAC. Desulfomicrobium harbored abundant propionate degradation-related genes, significantly correlating with tetracycline removal. The genes encoding carbon dioxide reduction in Methanothrix along with the detection of Geobacter might indicate direct interspecies electron transfer for methanogenesis in CFRs and PAC-added reactors. The study offers new insights into anaerobic digestion under tetracycline-stressed conditions and strategies for optimizing tetracycline removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130672 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!