Sediment-adsorbed Dissolved Organic Matter (SDOM) in coast plays a crucial role in the terrestrial and marine carbon cycle processes of the global environment. However, understanding the transport dynamics of SDOM along the coast of China, particularly its interactions with sediments, remains elusive. In this study, we analyzed the δC and δN stable isotopic compositions, as well as the molecular characteristics of SDOM collected from coastal areas spanning the Bohai Sea (BS), Yellow Sea (YS), East China Sea (ECS), and South China Sea (SCS), by using isotope ratio mass spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). We identified the predominant sources of carbon and nitrogen in coastal sediments, revealing terrigenous origins for most C and N, while anthropogenic sources dominated in the SCS. Spatial variations in SDOM chemodiversity were observed, with diverse molecular components influenced by distinct environmental factors and sediment sources. Notably, lignins and saturated compounds (such as proteins/amino sugars) were the predominant molecular compounds detected in coastal SDOM. Through Mantel tests and Spearman's correlation analysis, we elucidated the significant influence of spatial environmental factors (temperature, DO, salinity, and depth) and sediment sources on SDOM molecular chemodiversity. These findings contribute to a more comprehensive understanding of the carbon cycle dynamics along the Chinese coast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!