The decomposition rates and stoichiometric characteristics of many aquatic plants remain unclear, and our understanding of material flow and nutrient cycles within freshwater ecosystems is limited. In this study, an in-situ experiment involving 23 aquatic plants (16 native and 7 exotic species) was carried out via the litter bag method for 63 days, during which time the mass loss and nutrient content (carbon (C), nitrogen (N), and phosphorus (P)) of plants were measured. Floating-leaved plants exhibited the highest decomposition rate (0.038 ± 0.002 day), followed by submerged plants and free-floating plants (0.029 ± 0.002 day), and emergent plants had the lowest decomposition rate (0.019 ± 0.001 day). Mass loss by aquatic plants correlated with stoichiometric characteristics; the decomposition rate increased with an increasing P content and with a decreasing C content, C:N ratio, and C:P ratio. Notably, the decomposition rate of submerged exotic plants (0.044 ± 0.002 day) significantly exceeded that of native plants (0.026 ± 0.004 day), while the decomposition rate of emergent exotic plants was 55 ± 4 % higher than that of native plants. The decomposition rates of floating-leaved and free-floating plants did not significantly differ between the native and exotic species. During decomposition, emergent plants displayed an increase in C content and a decrease in N content, contrary to patterns observed in other life forms. The P content decreased for submerged (128 ± 7 %), emergent (90 ± 5 %), floating-leaved (104 ± 6 %), and free-floating plants (32 ± 6 %). Exotic plants released more C and P but accumulated more N than did native plants. In conclusion, the decomposition of aquatic plants is closely linked to litter quality and influences nutrient cycling in freshwater ecosystems. Given these findings, the invasion of the littoral zone by submerged and emergent exotic plants deserves further attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172271 | DOI Listing |
Sensors (Basel)
December 2024
School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Jinduicheng Molybdenum Co., Ltd., Xi'an 710077, China.
The ultrafine MoO powders were prepared by the combination of centrifugal spray drying and calcination in this work. The thermal decomposition behavior of the spherical precursor was studied. The phase constituents, morphologies, particle size, and specific surface areas of MoO powders were characterized at different temperatures.
View Article and Find Full Text PDFBMC Public Health
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, P. R. China.
Background: The ambient particulate matter pollution may play a critical role in the initiation and development of tracheal, bronchus, and lung (TBL) cancer. Up to now, far too little attention has been paid to TBL cancer attributable to ambient particulate matter pollution. This study aims to assess the disease burden of TBL cancer attributable to ambient particulate matter pollution in global, regional and national from 1990 to 2021 to update the epidemiology data of this disease.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Environmental Engineering, Anshun University, Anshun, 561000, China.
The decomposition of residual chitosan-based composite seed coating in kaolin under different temperatures and salinities is analyzed with a Fourier transform infrared spectroscopy (FT-IR). The degradation cycle is 28 days. The results show that a residue of the chitosan-based composite seed coating still exists in the kaolin on Day 7.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!