Maternal bisphenol A (BPA) exposure has been reported to cause learning and memory deficits in born offspring. However, little is known that this impairment is potentially caused by epigenetic modulation on the development of NMDA receptor subunits. This study investigates the effect of prenatal BPA exposure on the hippocampal miR-19a and miR-539, which are responsible for regulating NMDA receptor subunits as well as learning and memory functions. Pregnant Sprague Dawley rats were orally administered with 5 mg/kg/day of BPA from pregnancy day 1 (PD1) until gestation day 21 (GD21), while control mothers received no BPA. The mothers were observed daily until GD21 for either a cesarean section or spontaneous delivery. The male offspring were sacrificed when reaching GD21 (fetus), postnatal days 7, 14, 21 (PND7, 14, 21) and adolescent age 35 (AD35) where their hippocampi were dissected from the brain. The expression of targeted miR-19a, miR-539, GRIN2A, and GRIN2B were determined by qRT-PCR while the level of GluN2A and GluN2B were estimated by western blot. At AD35, the rats were assessed with neurobehavioral tests to evaluate their learning and memory function. The findings showed that prenatal BPA exposure at 5 mg/kg/day significantly reduces the expression of miR-19a, miR-539, GRIN2A, and GRIN2B genes in the male rat hippocampus at all ages. The level of GluN2A and GluN2B proteins is also significantly reduced when reaching adolescent age. Consequently, the rats showed spatial and fear memory impairments when reaching AD35. In conclusion, prenatal BPA exposure disrupts the role of miR-19a and miR-539 in regulating the NMDA receptor subunit in the hippocampus which may be one of the causes of memory and learning impairment in adolescent rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2024.114546 | DOI Listing |
Front Med (Lausanne)
December 2024
Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland.
Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!