The rapid growth of nanotechnology has led to the production of a significant amount of engineered nanomaterials (NMs), raising concerns about their impact on various domains. This study investigates the negative interactions between NMs and phytohormones in plants, revealing the changes in signaling crosstalk, integrated responses and ecological repercussions caused by NM pollution. Phytohormones, which include auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, salicylic acid and brassinosteroids are essential for plant growth, development, and stress responses. This review examines the intricate relationships between NMs and phytohormones, highlighting disruptions in signaling crosstalk, integrated responses, and ecological consequences in plants due to NM pollution. Various studies demonstrate that exposure to NMs can lead to alterations in gene expression, enzyme functions, and ultimately affect plant growth and stress tolerance. Exposure to NMs has the capacity to affect plant phytohormone reactions by changing their levels, biosynthesis, and signaling mechanisms, indicating a complex interrelation between NMs and phytohormone pathways. The complexity of the relationships between NMs and phytohormones necessitates further research, utilizing modern molecular techniques, to unravel the intricate molecular mechanisms and develop strategies to mitigate the ecological consequences of NM pollution. This review provides valuable insights for researchers and environmentalists concerned about the disruptive effects of NMs on regulating phytohormone networks in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.108603 | DOI Listing |
J Hazard Mater
December 2024
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan City, Hebei, China; China Agricultural University Shanghe County Baiqiao Town Science and Technology Courtyard, Shanghe County, Jinan, Shandong, China. Electronic address:
Chemosphere
July 2024
Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India. Electronic address:
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield.
View Article and Find Full Text PDFPlant Physiol Biochem
May 2024
Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala, 673635, India. Electronic address:
Plant Sci
March 2024
Department of Botany, University of Delhi, 110007 Delhi, India. Electronic address:
Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants.
View Article and Find Full Text PDF3 Biotech
October 2023
Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India.
Drought stress remains one of the most detrimental environmental constraints that hampers plant growth and development resulting in reduced yield and leading to economic losses. Studies have highlighted the beneficial role of carbon-based nanomaterials (NMs) such as multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), graphene, fullerene, and metal-based nanoparticles (NPs) (Ag, Au, Cu, FeO, TiO, and ZnO) in plants under unfavorable conditions such as drought. NPs help plants cope with drought by improving plant growth indices and enhancing biomass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!