Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session91j3c3tpbrf9d748jlh1ralib1hpfnaa): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108632 | DOI Listing |
Plast Reconstr Surg Glob Open
December 2024
From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.
Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
December 2024
Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Bunkyo Ward, Tokyo, Japan.
Background: Almost half of all spontaneously occurring keloids are acne keloids on the anterior chest. These keloids often grow in a crab-claw shape due to predominant tractional stresses on the scar; such stresses are risk factors for keloid growth/progression. To understand the relationship between acne keloid growth and mechanical stress, we conducted finite element analysis (FEA), measured the long/short dimensions of photographed acne keloids, and subjected acne keloids to microscopy.
View Article and Find Full Text PDFPleura Peritoneum
December 2024
Faculty of Health, Aarhus University, Aarhus, Denmark.
Objectives: Cancer cells can activate coagulation and inhibit fibrinolysis. The aim was to investigate the association between the burden of peritoneal metastases from colorectal cancer (PM-CRC) and biomarkers reflecting thrombin generation and fibrinolysis.
Methods: A cohort of 55 patients with PM-CRC scheduled for cytoreductive surgery.
Chemosphere
December 2024
Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea. Electronic address:
Microplastics (MPs) are one of the most widespread environmental pollutants, but their risk assessment to freshwater ecosystems has not been clearly investigated. Risk assessment has been constrained by the absence of MP concentration in some environment, the diverse types and shapes of MPs, and limitations of polystyrene (PS)-biased toxicity studies. This study examined exposure to MPs in rivers and lakes worldwide, including China (the Three Gorges Dam & Yangtze River (TGD & YR) and the lakes of Wuhan city (WL)), Vietnam (seven lakes of Da Nang city (7UL)), Europe (the Rhine River (RR)), Finland (Kallavesi Lake (KL)), Argentina (nine lakes in the Patagonia region (9LP)), Brazil (Guaiba Lake (GL)), and South Korea (Nakdong River (NR), Han River (HR), and Anyang Stream (AS)), and assessed the risks to aquatic ecosystems based on the toxicity information and morphology of MPs.
View Article and Find Full Text PDFTalanta
December 2024
Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany. Electronic address:
The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!