Importance: The US Food and Drug Administration's (FDA) accelerated approval pathway allows approval of investigational drugs treating unmet medical needs based on changes to surrogate measures considered "reasonably likely" to predict clinical benefit. Postapproval clinical trials are then required to confirm whether these drugs offer clinical benefit.
Objective: To determine whether cancer drugs granted accelerated approval ultimately demonstrate clinical benefit and to evaluate the basis of conversion to regular approval.
Design, Setting, And Participants: In this cohort study, publicly available FDA data were used to identify cancer drugs granted accelerated approval from 2013 to 2023.
Main Outcomes And Measures: Demonstrated improvement in quality of life or overall survival in accelerated approvals with more than 5 years of follow-up, as well as confirmatory trial end points and time to conversion for drug-indication pairs converted to regular approval.
Results: A total of 129 cancer drug-indication pairs were granted accelerated approval from 2013 to 2023. Among 46 indications with more than 5 years of follow-up (approved 2013-2017), approximately two-thirds (29, 63%) were converted to regular approval, 10 (22%) were withdrawn, and 7 (15%) remained ongoing after a median of 6.3 years. Fewer than half (20/46, 43%) demonstrated a clinical benefit in confirmatory trials. Time to withdrawal decreased from 9.9 years to 3.6 years, and time to regular approval increased from 1.6 years to 3.6 years. Among 48 drug-indication pairs converted to regular approval, 19 (40%) were converted based on overall survival, 21 (44%) on progression-free survival, 5 (10%) on response rate plus duration of response, 2 (4%) on response rate, and 1 (2%) despite a negative confirmatory trial. Comparing accelerated and regular approval indications, 18 of 48 (38%) were unchanged, while 30 of 48 (63%) had different indications (eg, earlier line of therapy).
Conclusions And Relevance: Most cancer drugs granted accelerated approval did not demonstrate benefit in overall survival or quality of life within 5 years of accelerated approval. Patients should be clearly informed about the cancer drugs that use the accelerated approval pathway and do not end up showing benefits in patient-centered clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000139 | PMC |
http://dx.doi.org/10.1001/jama.2024.2396 | DOI Listing |
Vet Res Commun
January 2025
College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Neurology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou City, Jiangsu Province, China.
Objective: To investigate the synergistic effects of combined sleep interventions and enhanced nutritional support on postoperative recovery in colon cancer patients, with a focus on sleep quality, nutritional status, pain management, psychological well-being, and quality of life.
Methods: This randomized controlled trial included 290 postoperative colon cancer patients admitted to the First Affiliated Hospital of Soochow University between May 2021 and May 2023. Participants were randomized into two groups: the intervention group, which received standard care supplemented with sleep and nutritional interventions, and the control group, which received standard care alone.
Background: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.
View Article and Find Full Text PDFImmunohorizons
January 2025
Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
C3 glomerulopathy (C3G), a rare kidney disease caused by dysregulation of alternative pathway complement activation, is characterized by glomerular C3 deposition, proteinuria, crescentic glomerulonephritis, and renal failure. The anti-C5 monoclonal antibody (mAb) drug eculizumab has shown therapeutic effects in some but not all patients with C3G, and no approved therapy is currently available. Here, we developed and used a triple transgenic mouse model of fast progressing lethal C3G (FHm/mP-/-hFDKI/KI) to compare the therapeutic efficacy of a bifunctional anti-C5 mAb fused to a functional factor H (FH) fragment (short consensus repeat 1-5 [SCR1-5]) and the anti-C5 mAb itself.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!