The crevice corrosion susceptibility of cold-worked Type 316LVM stainless steel, cast Co-Cr-Mo, wrought Co-Cr-W-Ni, non-nitrided and nitrided Ti-6Al-4V ELI, and c.p. Ti, Grades 1 and 4, was studied in vitro by means of a crevice cell. Occlusion was created by interfacing a disc specimen and a Teflon bar. Specimens were mechanically prepared through 2-4 micron Al2O3 and passivated in 30% HNO3, followed by steam sterilization. Tests were performed in a deaerated Ringer's solution, maintained at pH = 7 and 37 degrees C. Anodic polarization was conducted potentiostatically at pre-selected levels, and resultant currents were monitored: stainless steel, 50 and 100 mV (S.C.E.), 450 min; non-stainless materials, 600 mV, 1000 min. Results for the stainless steel demonstrated that a HNO3 passivation treatment reduced its crevice corrosion susceptibility. For the non-stainless steel materials, no crevice corrosion susceptibility was observed, although a dulling and discoloration of c.p. Ti was evident. Recognizing that 600 mV is in excess of the O2 reduction potential in vivo, it was concluded that, in the absence of fretting, implants of these non-stainless steel materials would not experience significant corrosion loss under crevice conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345850640051201DOI Listing

Publication Analysis

Top Keywords

crevice corrosion
16
corrosion susceptibility
12
stainless steel
12
vitro crevice
8
materials crevice
8
non-stainless steel
8
steel materials
8
corrosion
5
crevice
5
steel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!