Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 10 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3 T, CD3CD4 T, CD3CD8 T and CD3CD21cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3 T, CD3CD4 T, CD3CD8 T and CD3CD21 cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998357 | PMC |
http://dx.doi.org/10.1186/s12917-024-03993-1 | DOI Listing |
Vet Res
December 2024
Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León, Spain.
Streptococcus suis is a worldwide pathogen that impacts the swine industry, causing severe clinical signs, including meningitis and arthritis, in postweaning piglets. A key virulence mechanism of S. suis is biofilm formation, which improves its persistence and resistance to external factors.
View Article and Find Full Text PDFPorcine Health Manag
November 2024
Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
Background: Glaesserella parasuis (G. parasuis) is the primary agent of Glässer's disease, significantly affecting nursery and early fattening piglets. Current prophylactic measures, mainly serovar-specific bacterins administered to sows, are limited by maternal immunity, which can interfere with active immunization in piglets.
View Article and Find Full Text PDFBMC Vet Res
November 2024
Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
Vaccines (Basel)
September 2024
College of Life Sciences, Longyan University, Longyan 364000, China.
Swine Glasser's disease, instigated by (), is a significant bacterial infection that causes substantial economic losses in pig farming operations. The role of mucosal immunity is pivotal in defending against . This study focused on the construction of PLGA microspheres that encapsulate the outer membrane protein OMP16 from (PLGA-OMP16) and evaluated their immunological effectiveness in a mouse model.
View Article and Find Full Text PDFMicroorganisms
October 2024
State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Porcine respiratory disease is a significant economic problem for the global swine industry. (), (), and () are three important pathogenic bacteria of the swine respiratory tract. Notably, the three pathogens not only frequently manifest as mixed infections, but their striking clinical similarities also present difficulties for pig populations in terms of disease prevention and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!