Interactions between membranes and biomolecular condensates can give rise to complex phenomena such as wetting transitions, mutual remodeling, and endocytosis. In this study, light-triggered manipulation of condensate engulfment is demonstrated using giant vesicles containing photoswitchable lipids. UV irradiation increases the membrane area, which can be stored in nanotubes. When in contact with a condensate droplet, the UV light triggers rapid condensate endocytosis, which can be reverted by blue light. The affinity of the protein-rich condensates to the membrane and the reversibility of the engulfment processes is quantified from confocal microscopy images. The degree of photo-induced engulfment, whether partial or complete, depends on the vesicle excess area and the relative sizes of vesicles and condensates. Theoretical estimates suggest that utilizing the light-induced excess area to increase the vesicle-condensate adhesion interface is energetically more favorable than the energy gain from folding the membrane into invaginations and tubes. The overall findings demonstrate that membrane-condensate interactions can be easily and quickly modulated via light, providing a versatile system for building platforms to control cellular events and design intelligent drug delivery systems for cell repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187966PMC
http://dx.doi.org/10.1002/advs.202309864DOI Listing

Publication Analysis

Top Keywords

biomolecular condensates
8
giant vesicles
8
excess area
8
photoswitchable endocytosis
4
endocytosis biomolecular
4
condensates
4
condensates giant
4
vesicles interactions
4
interactions membranes
4
membranes biomolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!