Increasing lithium contents within the lattice of positive electrode materials is projected in pursuit of high-energy-density batteries. However, it intensifies the release of lattice oxygen and subsequent gas evolution during operations. This poses significant challenges for managing internal pressure of batteries, particularly in terms of the management of gas evolution in composite electrodes-an area that remains largely unexplored. Conventional assumptions postulate that the total gas evolution is estimated by multiplying the total particle count by the quantities of gas products from an individual particle. Contrarily, this investigation on overlithiated materials-a system known to release the lattice oxygen-demonstrates that loading densities and inter-particle spacing in electrodes significantly govern gas evolution rates, leading to distinct extents of gas formation despite of an equivalent quantity of released lattice oxygen. Remarkably, this study discoveres that O and CO evolution rates are proportional to O concentration by the factor of second and first-order, respectively. This indicates an exceptionally greater change in the evolution rate of O compared to CO depending on local O concentration. These insights pave new routes for more sophisticated approaches to manage gas evolution within high-energy-density batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165528 | PMC |
http://dx.doi.org/10.1002/advs.202400568 | DOI Listing |
Environ Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. 300044 Hsinchu City, Taiwan, ROC. Electronic address:
This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process.
View Article and Find Full Text PDFFood Chem
January 2025
SAAS Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
The flavor evolution of yellow peaches during ripening was investigated using a gas chromatography-mass spectrometer (GC-MS), metabolomics, and electronic sensoristic techniques. Of the 41 volatiles quantified, 13 increased the intensity of the aroma based on the odor activity values (OAVs). Additionally, 142 non-volatile compounds were identified.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China; Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot, 010051, China.
To investigate the effect of combined action of discharge plasma (DP) and plasma-activated water (PAW) in mutagenesis breeding, this study focuses on Agropyron mongolicum. We utilized high-voltage DC pulsed dielectric barrier discharge for seed treatment, alone and in combination with PAW. The research focused on germination rates, evolution of physicochemical properties of imbibition residual solution, reactive oxygen species (ROS), malondialdehyde (MDA), and volatile organic compounds (VOCs) to assess DP-induced damage and variability in Agropyron mongolicum.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Sanandaj 66177-15175, Iran.
Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!