This study investigates how wheat gluten (WG) films in the presence of salicylic acid are influenced by thermal pretreatment. Unlike previous methods conducted at low moisture content, our procedure involves pretreating WG at different temperatures (65 °C, 75 °C, and 85 °C), in a solution with salicylic acid. This pretreatment aims to enhance protein unfolding, thus providing more opportunities for protein-protein interactions during the subsequent solvent casting into films. A significant increase in β-sheet structures was observed in FTIR spectra of samples pretreated at 75 °C and 85 °C, showing a prominent peak in the range of 1630-1640 cm. The pretreatment at 85 °C was found to be effective in improving the water resistivity of the films by up to 247 %. Moreover, it led to a significant enhancement of 151 % in tensile strength and a 45 % increase in the elastic modulus. The reduced solubility observed in films derived from pretreated WG suggests the development of an intricate protein network arising from protein-protein interactions during the pretreatment and film formation. Thermal pretreatment at 85 °C significantly enhances the structural and mechanical properties of WG films, including improved water resistivity, tensile strength, and intricate protein network formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131402DOI Listing

Publication Analysis

Top Keywords

salicylic acid
12
acid pretreatment
8
gluten films
8
thermal pretreatment
8
75 °c 85 °c
8
protein-protein interactions
8
pretreatment 85 °c
8
water resistivity
8
tensile strength
8
intricate protein
8

Similar Publications

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.

View Article and Find Full Text PDF

Investigation of the anti-Huanglongbing effects using antimicrobial lipopeptide and phytohormone complex powder prepared from MG-2 fermentation.

Front Microbiol

December 2024

National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China.

Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of strain MG-2 to treat Liberibacter asiaticus (Las)-infected ' 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection.

View Article and Find Full Text PDF

Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense.

View Article and Find Full Text PDF

Celosia argentea is a plant known for producing bioactive compounds, including betalains, which possess various biological and pharmaceutical properties. This study aimed to investigate the effect of biotic and abiotic elicitors on betalains production and their antioxidant activity in cell suspension cultures of C. argentea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!