Detecting changes in industrial pollution by analyzing heavy metal concentrations in tree-ring wood from Romanian conifer forests.

Environ Res

National Institute for Research and Development in Forestry "Marin Drăcea" (INCDS Marin Drăcea), 077190, Voluntari, Romania; Transilvania University, Faculty of Silviculture and Forest Engineering, 1, Ludwig van Beethoven Street, Brasov, 500123, Romania.

Published: July 2024

AI Article Synopsis

  • The study investigates the effects of air pollution on tree growth in urban areas, focusing on two conifer species in regions of northern Romania.
  • Concentrations of manganese (Mn) in silver fir trees in polluted areas averaged three times higher compared to unpolluted areas, while Norway spruce showed even greater accumulation of heavy metals in some tests.
  • Two analytical methods, ICP-MS and XRF, were used to analyze metal concentrations in tree rings, each offering unique advantages depending on the specific metal and analysis requirements.

Article Abstract

The impact of air pollution on forests, especially in urban areas, has been increasingly discussed recently. Many pollutants, including heavy metals, are released into the atmosphere from various sources, such as mining, non-ferrous metal processing plants, and fossil fuel combustion. These pollutants can adversely affect not only tree growth but also other species, including humans. This study compared the concentrations of several elements in tree-ring wood from two conifer species (Silver fir, Abies alba; Norway spruce, Picea abies) growing in polluted and unpolluted areas. Two regions in northern Romania (Bicaz and Tarnița) that were subjected to historical pollution changes were selected. Two chemical analyses were used: inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). The silver fir trees from the intensively polluted area in the Tarnița region were negatively impacted by industrial pollution: the Mn concentrations were, on average, three times higher in polluted areas than in unpolluted areas (ca. 30 vs. 10 mg kg). This finding was consistent for both ICP-MS and XRF analyses. However, in Norway spruce, this difference was found only in the XRF data, which detected Mn concentrations seven times higher in trees from polluted areas than those from unpolluted areas (ca. 700 vs. 100 mg kg). In the Tarnița region, Norway spruce accumulated more heavy metals than silver fir, but the most pronounced differences between polluted and unpolluted areas were found in silver fir. The two analytical methods are commonly used to determine metal concentrations in wood, and they complement each other, with ICP-MS having a low detection limit for some elements and XRF having higher detection limits and better accuracy. Each method has its advantages and disadvantages, and the optimal method depends on many factors, such as the type of heavy metal analyzed, its concentration in wood, sample type, cost, analysis time, and sample preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118884DOI Listing

Publication Analysis

Top Keywords

silver fir
16
unpolluted areas
16
norway spruce
12
industrial pollution
8
heavy metal
8
metal concentrations
8
tree-ring wood
8
heavy metals
8
polluted unpolluted
8
tarnița region
8

Similar Publications

Oxygen (δO) and hydrogen (δH) stable isotope ratios are tightly coupled in precipitation and, albeit damped, in leaf water, but are often decoupled in tree-ring cellulose. The environmental and physiological conditions in which this decoupling occurs are not yet well understood. We investigated the relationships between δO and δH and tree-ring width (TRW), tree crown volume, tree age and climate in silver fir and Douglas-fir and found substantial differences between δO and δH.

View Article and Find Full Text PDF

Photorespiration (PR) greatly reduces net carbon assimilation in trees (by c. 25%), but has received recent attention particular for its potential role in stress-signaling through the accumulation of hydrogen peroxide (H2O2), a stress signaling agent. Despite an increasing frequency of drought and heat events affecting forests worldwide, little is known about how concurrent abiotic stressors may interact to affect PR and subsequent H2O2 accumulation in trees.

View Article and Find Full Text PDF

The impact of atmospheric pollution on the growth of European forest tree species, particularly European beech, Silver fir and Norway spruce, is examined in five mesic forests in the Czech Republic. Analyzing of basal area increment (BAI) patterns using linear mixed effect models reveals a complex interplay between atmospheric nitrogen (N) and sulphur (S) deposition, climatic variables and changing CO concentrations. Beech BAI responds positively to N deposition (in tandem with air CO concentration), with soil phosphorus (P) availability emerging as a significant factor influencing overall growth rates.

View Article and Find Full Text PDF

Understanding recovery times and mechanisms of ecosystem dynamics towards the old-growth stage is crucial for forest restoration, but still poorly delineated in Mediterranean. Through tree-ring methods, we reconstructed the return of a tall canopy after severe human disturbance in a mixed beech (Fagus sylvatica) and silver fir (Abies alba) forest, located at a mountain site in the southern edge of both species' range (Gariglione, south Italy). The primary forest was extensively harvested between 1930 and 1950, removing up to 91 % of the biomass.

View Article and Find Full Text PDF

Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings.

Tree Physiol

September 2024

Conservación de Ecosistemas, Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain.

Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering the carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable carbon and oxygen isotopic signals, and elemental composition of tree rings in silver fir (Abies alba Mill.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!