The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 μM. The achieved sensitivities of 24.62 μA μM cm and 22.10 μA μM cm surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 μM and 0.16 μM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118860DOI Listing

Publication Analysis

Top Keywords

antimony sulfide
16
electrochemical sensors
12
microbial synthesis
8
catechol hydroquinone
8
electrochemical
6
materials
5
antimony
4
synthesis antimony
4
sulfide
4
sulfide prepare
4

Similar Publications

Spin coating stands out as the most employed thin-film deposition technique across a variety of scientific fields. Particularly in the past two decades, spin coaters have become increasingly popular due to the emergence of solution-processed semiconductors such as quantum dots and perovskites. However, acquiring commercial spin coaters from reputable suppliers remains a significant financial burden for many laboratories, particularly for smaller research or educational facilities.

View Article and Find Full Text PDF

Antimony sulfide (SbS) is regarded as one of the potential candidates for the next generation of photovoltaic absorber due to its excellent photoelectric properties. However, the selection and optimization of the hole transport layer (HTL) is still a major challenge for efficiency breakthrough of the SbS solar cells. In this work, lead sulfide (PbS) is deposited as a HTL of the SbS device by thermal evaporation for the first time.

View Article and Find Full Text PDF

Evaluating the influence of alternating flooding and drainage on antimony speciation and translocation in a soil-rice system.

Sci Total Environ

December 2024

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

The quantitative evaluation of antimony (Sb) accumulation in rice has garnered significant attention due to the potential risks to human health. A pot experiment was conducted to investigate the essential nodes of Sb transfer in soil-rice system. Seven step extract results showed that during the flooding period, organic matter releasing was the primary factor contributing 14.

View Article and Find Full Text PDF

Antimony sulfide (SbS) photodetectors (PDs) possess extensive application prospects. Efficient carrier transport of a PD significantly affects the detectivity and response speed. Herein, we propose an all-inorganic self-powered SbS PD based on vertical TiO nanorods (NRs).

View Article and Find Full Text PDF

Elemental sulfur (S) autotrophic reduction is a promising approach for antimonate [Sb(V)] removal from water; however, it is hard to achieve effective removal of total antimony (TSb). This study established internal recirculation in an S autotrophic bioreactor (SABIR) to enhance TSb removal from Sb(V)-contaminated water. Complete Sb(V) reduction (10 mg/L) with bare residual Sb(III) (< 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!