Growing quantities of biomass ashes (phyto-ashs) are currently produced worldwide due to the increasing biomass consumption in energy applications. Utilization of phyto-ash in agriculture is environmentally friendly solution. However, mechanisms involving the coordination of carbon metabolism and distribution in plants and soil amendment are not well known. In the present study, tobacco plants were chemically-fertilized with or without 2‰ phyto-ash addition. The control had sole chemical fertilizer; for two phyto-ash treatments, the one (T1) received comparable levels of nitrogen, phophorus, and potassium from phyto-ash and fertilizers as the control and another (T2) had 2‰ of phyto-ash and the same rates of fertilizers as the control. Compared with the control, phyto-ash addition improved the soil pH from 5.94 to about 6.35; T2 treatment enhanced soil available potassium by 30% but no difference of other elements was recorded among three treatments. Importantly, bacterial (but not fungal) communities were significantly enriched by phyto-ash addition, with the rank of richness as: T2 > T1 > control. Consistent with amelioration of soil properties, phyto-ash promoted plant growth through enlarged leaf area and photosynthesis and induced outgrowth of lateral roots (LRs). Interestingly, increased auxin content was recorded in 2 and 3 leaves and roots under phyto-ash application, also with the rank level as T2 > T1 > control, paralleling with higher transcripts of auxin synthetic genes in the topmost leaf and stronger [H]IAA activity under phyto-ash addition. Furthermore, exogenous application of analog exogenous auxin (NAA) restored leaf area, photosynthesis and LR outgrowth to the similar level as T2 treatment; conversely, application of auxin transport inhibitor (NPA) under T2 treatment retarded leaf and root development. We demonstrated that phyto-ash addition improved soil properties and thus facilitated carbon balance within plants and biomass accumulation in which shifting auxin distribution plays an important role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141910 | DOI Listing |
Chemosphere
June 2024
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Growing quantities of biomass ashes (phyto-ashs) are currently produced worldwide due to the increasing biomass consumption in energy applications. Utilization of phyto-ash in agriculture is environmentally friendly solution. However, mechanisms involving the coordination of carbon metabolism and distribution in plants and soil amendment are not well known.
View Article and Find Full Text PDFPolymers (Basel)
April 2021
Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
The rich structural hierarchy of plants permits the obtainment of porous structures which can be expected to show improved performances in fields such as pharmaceuticals and cosmetics, catalysis, drug delivery, adsorption, separation or sensors in various chemical reactions. On the other hand, porous materials can be an active additive to polymer composites. The aim of the study was to obtain natural rubber (NR) biocomposites with the addition of phyto-ashes reach in biogenic silica from plant biomass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!