Characterisation of ten NS2B-NS3 proteases: Paving the way for pan-flavivirus drugs.

Antiviral Res

Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia. Electronic address:

Published: June 2024

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly-Ser-Gly linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2024.105878DOI Listing

Publication Analysis

Top Keywords

ns2b-ns3 proteases
8
proteases
5
protease
5
characterisation ten
4
ten ns2b-ns3
4
proteases paving
4
paving pan-flavivirus
4
pan-flavivirus drugs
4
flaviviruses
4
drugs flaviviruses
4

Similar Publications

With the escalation of viral infections in recent decades, including the COVID- 19 pandemic, viral infectious diseases have increasingly become a global concern, attracting significant attention. Among many viral epidemics, the dengue virus, an RNA virus from the Flaviviridae family, has been reported by the WHO as one of the most prevalent mosquito-borne diseases, infecting roughly 400 million people yearly and spreading across all continents worldwide. In the last two decades, researchers from academia and industry have diligently studied many aspects of the virus, including its structure, life cycle, potential therapeutic agents, and vaccines.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.

View Article and Find Full Text PDF

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!