Influence of trophic overlaps and trophic niche amplitude on microplastic intake of fish species in shallow areas of a neotropical coastal lagoon.

Sci Total Environ

Grupo de Gestão, Ecologia e Tecnologia Marinha (GTMar), Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), Brazil; Laboratório de Ecologia e Biodiversidade Animal (LABAN), Museu de Zoologia Prof Morgana Cirimbelli Gaidzinski, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil.

Published: June 2024

AI Article Synopsis

  • Plastic pollution significantly impacts marine ecosystems, with microplastics entering the food chain through invertebrates and fish.
  • The study examined the diets of six fish species to determine how their feeding behaviors contribute to plastic ingestion, classifying them into various predator groups based on age and trophic interactions.
  • Results showed that fish with higher dietary overlap consumed more microplastic fibers, indicating that a broader diet may increase vulnerability to plastic ingestion, highlighting the need to understand ecological interactions to address plastic contamination effectively.

Article Abstract

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172235DOI Listing

Publication Analysis

Top Keywords

fish species
20
niche amplitude
12
trophic niche
8
species
8
marine ecosystems
8
plastic ingestion
8
plastics ingested
8
fish
6
plastic
5
influence trophic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!