Terpenoids have long been known to originate from natural sources. However, there is growing evidence for emissions from anthropogenic activities in cities, in particular from the production, manufacturing, and use of household solvents. Here, as part of the DATAbASE (Do Anthropogenic Terpenoids mAtter in AtmoSpheric chEmistry?) project, we investigate for the first time the potential role of industrial activities on the terpenoid burden in the urban atmosphere. This study is based on continuous VOC observations from an intensive field campaign conducted in July 2014 at an industrial-urban background site located in Dunkirk, Northern France. More than 80 VOCs including oxygenated and terpenoid compounds were measured by on-line Thermal Desorption Gas Chromatography with a Flame Ionization Detection (TD-GC-FID) and Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). Isoprene, α-pinene, limonene and the sum of monoterpenes were the terpenoids detected at average mixing ratios of 0.02 ± 0.02 ppbv, 0.02 ± 0.02 ppbv, 0.01 ± 0.01 ppbv and 0.03 ± 0.05 ppbv, respectively. Like other anthropogenic VOCs, the mixing ratios of terpenoids significantly increase downwind the industrial plumes by one order of magnitude. Positive Matrix Factorization (PMF) was performed to identify the different emission sources of VOCs and their contribution. Six factors out of the eight factors extracted (r = 0.95) are related to industrial emissions such as solvent use, chemical and agrochemical storage, metallurgy, petrochemical, and coal-fired industrial activities. From the correlations between the industrial-type PMF factors, sulfur dioxide, and terpenoids, we determined their emissions ratios and we quantified for the first time their industrial emissions. The highest emission ratio is related to the alkene-dominated factor and is related to petrochemical, metallurgical and coal-fired industrial activities. The industrial emissions of monoterpenes equal 8.1 ± 4.3 tons/year. Those emissions are as significant as the non-industrialized anthropogenic ones estimated for the Paris megacity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172098DOI Listing

Publication Analysis

Top Keywords

industrial activities
12
industrial emissions
12
northern france
8
mixing ratios
8
002 ± 002 ppbv
8
coal-fired industrial
8
industrial
7
terpenoids
6
emissions
6
anthropogenic
5

Similar Publications

Abnormal cholesterol metabolism has become a popular therapeutic target in cancer therapy. In recent years there has been a surge in interest in the anti-tumor activities of saponins, particularly their ability to disrupt cholesterol homeostasis in tumor cells. Cholesterol regulation by saponins is a complex process that involves multiple mechanisms.

View Article and Find Full Text PDF

Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries.

View Article and Find Full Text PDF

Chemistry from 3D printed objects.

Nat Rev Chem

May 2019

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.

3D printing technology has started to take hold as an enabling tool for scientific advancement. Born from the marriage of computer-aided design and additive manufacturing, 3D printing was originally intended to generate prototypes for inspection before their full industrial production. As this field has matured, its reach into other applications has expanded, accelerated by its ability to generate 3D objects with complex geometries.

View Article and Find Full Text PDF

Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.

View Article and Find Full Text PDF

A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!