The timely control of infectious diseases can prevent the spread of infections and mitigate the significant socio-economic damage witnessed during recent pandemics. Diagnostic methods play a significant role in detecting highly contagious agents, such as viruses, to prevent further transmission. The emergence of advanced point-of-care techniques offers several advantages over conventional approaches for detecting infectious agents. These techniques are highly sensitive, rapid, can be miniaturized, and are cost-effective. Recently, MXene-based 2D nanocomposites have proven beneficial for fabricating electrochemical biosensors due to their suitable electrical, optical, and mechanical properties. This article covers electrochemical biosensors based on MXene nanocomposite for the detection of viruses, along with the associated challenges and future possibilities. Additionally, we highlight various conventional techniques for the detection of infectious agents, discussing their pros and cons. We delve into the challenges faced during the fabrication of MXene-based biosensors and explore future endeavors. It is anticipated that the information presented in this work will pave the way for the development of Point-of-Care (POC) devices capable of sensitive and selective virus detection, enhancing preparedness for ongoing and future pandemics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!