Modern metallurgical and smelting activities discharge the lead-containing wastewater, causing serious threats to human health. Bacteria and urease applied to microbial-induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) are denatured under high Pb concentration. The nano-hydroxyapatite (nHAP)-assisted biomineralization technology was applied in this study for Pb immobilization. Results showed that the extracellular polymers and cell membranes failed to secure the urease activity when subjected to 60 mM Pb. The immobilization efficiency dropped to below 50% under MICP, whereas it due to a lack of extracellular polymers and cell membranes dropped to below 30% under EICP. nHAP prevented the attachment of Pb either through competing with bacteria and urease or promoting Ca/Pb ion exchange. Furthermore, CO from ureolysis replaced the hydroxyl (-OH) in hydroxylpyromorphite to encourage the formation of carbonate-bearing hydroxylpyromorphite of higher stability (Pb(PO)CO). Moreover, nHAP application overcame an inability to provide nucleation sites by urease. As a result, the immobilization efficiency, when subjected to 60 mM Pb, elevated to above 80% under MICP-nHAP and to some 70% under EICP-nHAP. The findings highlight the potential of applying the nHAP-assisted biomineralization technology to Pb-containing water bodies remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134210 | DOI Listing |
Curr Microbiol
January 2025
Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
A facultative anaerobic, Gram-stain-negative, non-motile, rod-shaped bacterial strain AGMB14963 was isolated from the feces of a dairy cow. A 16S rRNA gene sequence-based phylogenetic analysis revealed that strain AGMB14963 belongs to the genus Gallibacterium, with Gallibacterium salpingitidis F150 being the closest species (95.8% 16S rRNA gene sequence similarity).
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.
View Article and Find Full Text PDFNat Commun
January 2025
Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFAs one of the most sensitive and fragile alpine ecosystems in the Qilian Mountains, the alpine meadow holds significant scientific importance in understanding the changes in the characteristics of soil bacterial community in response to altitude and aspect variations. In our study, we analyzed the composition, diversity, and function of soil bacterial communities in alpine meadows at different altitudes and aspects and their relationship with environmental factors. Our results indicate that altitude and aspect orientation significantly influences the diversity index and composition of soil bacterial communities.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.
Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!