Hydrogen peroxide (HO) is a common oxidant that plays an important role in many biological processes and is also an important medium analysis in various fields. In this work, a new electrochemical nanosensor capable of detecting and quantifying hydrogen peroxide was introduced. This nanosensor was fabricated by electrodepositing prussian blue (PB)/graphene quantum dots (GQDs)/polypyrrole (PPy) on single nanopore electrode etched from single gold nanoelectrode. This prepapred nanosensor exhibits good electrochemical response to hydrogen peroxide with high sensitivity and stability, with a linear response in the 2.0 and 80 μM by using amperometric method and differential pulse voltammetry (DPV) method. The limit of detections are 0.33 μM (S/N = 3) for amperometric method and 0.67 μM (S/N = 3) for differential pulse voltammetry (DPV) method, respectively. This nanosensor can be used for the determination of hydrogen peroxide in human urine, and can serve as a new electrochemical platform to monitor HO release from single living cells due to its small overal dimension and high sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!