Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Importance: Aortic stenosis (AS) is a major public health challenge with a growing therapeutic landscape, but current biomarkers do not inform personalized screening and follow-up. A video-based artificial intelligence (AI) biomarker (Digital AS Severity index [DASSi]) can detect severe AS using single-view long-axis echocardiography without Doppler characterization.
Objective: To deploy DASSi to patients with no AS or with mild or moderate AS at baseline to identify AS development and progression.
Design, Setting, And Participants: This is a cohort study that examined 2 cohorts of patients without severe AS undergoing echocardiography in the Yale New Haven Health System (YNHHS; 2015-2021) and Cedars-Sinai Medical Center (CSMC; 2018-2019). A novel computational pipeline for the cross-modal translation of DASSi into cardiac magnetic resonance (CMR) imaging was further developed in the UK Biobank. Analyses were performed between August 2023 and February 2024.
Exposure: DASSi (range, 0-1) derived from AI applied to echocardiography and CMR videos.
Main Outcomes And Measures: Annualized change in peak aortic valve velocity (AV-Vmax) and late (>6 months) aortic valve replacement (AVR).
Results: A total of 12 599 participants were included in the echocardiographic study (YNHHS: n = 8798; median [IQR] age, 71 [60-80] years; 4250 [48.3%] women; median [IQR] follow-up, 4.1 [2.4-5.4] years; and CSMC: n = 3801; median [IQR] age, 67 [54-78] years; 1685 [44.3%] women; median [IQR] follow-up, 3.4 [2.8-3.9] years). Higher baseline DASSi was associated with faster progression in AV-Vmax (per 0.1 DASSi increment: YNHHS, 0.033 m/s per year [95% CI, 0.028-0.038] among 5483 participants; CSMC, 0.082 m/s per year [95% CI, 0.053-0.111] among 1292 participants), with values of 0.2 or greater associated with a 4- to 5-fold higher AVR risk than values less than 0.2 (YNHHS: 715 events; adjusted hazard ratio [HR], 4.97 [95% CI, 2.71-5.82]; CSMC: 56 events; adjusted HR, 4.04 [95% CI, 0.92-17.70]), independent of age, sex, race, ethnicity, ejection fraction, and AV-Vmax. This was reproduced across 45 474 participants (median [IQR] age, 65 [59-71] years; 23 559 [51.8%] women; median [IQR] follow-up, 2.5 [1.6-3.9] years) undergoing CMR imaging in the UK Biobank (for participants with DASSi ≥0.2 vs those with DASSi <.02, adjusted HR, 11.38 [95% CI, 2.56-50.57]). Saliency maps and phenome-wide association studies supported associations with cardiac structure and function and traditional cardiovascular risk factors.
Conclusions And Relevance: In this cohort study of patients without severe AS undergoing echocardiography or CMR imaging, a new AI-based video biomarker was independently associated with AS development and progression, enabling opportunistic risk stratification across cardiovascular imaging modalities as well as potential application on handheld devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999005 | PMC |
http://dx.doi.org/10.1001/jamacardio.2024.0595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!