Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-024-04391-5DOI Listing

Publication Analysis

Top Keywords

glycosyl hydrolases
12
pathogen infections
12
roles plant
8
family carbohydrate-active
8
carbohydrate-active enzymes
8
enzymes cazymes
8
glycosidases glycosyl
8
plant defense
8
plant glycosidases
8
plant
7

Similar Publications

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

Two glycoside hydrolase family 1 proteins mediate glycosylated modification at the 5-position of anthocyanin in grape hyacinth.

Int J Biol Macromol

January 2025

College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China. Electronic address:

Glycosylation modification of anthocyanins is important as a preceding step to acylation modification. Cyanidin-3-O-(p-coumaroyl)glucoside-5-O-malonylglucoside (Cy3pCG5MaG) is one of the major anthocyanin substances in blue-flowered grape hyacinth, but its 5-position glycosylation is unknown. Here, we identified two glycoside hydrolase family 1 genes, MaAGGT1 and MaAGGT5, which use acyl-glucose as a donor and are involved in the glycosylation modification of anthocyanins in grape hyacinth.

View Article and Find Full Text PDF

Molecular Evolution of the Gene in the Subfamily Murinae.

Animals (Basel)

December 2024

Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain.

OGP, encoded by the gene, is the major non-serum oviductal protein in most mammals. In the genome of , has been identified as a pseudogene. However, presents a functional gene.

View Article and Find Full Text PDF

Biochemical characterization of the catalytic domain from a novel hyperthermophilic β-glucanase and its application for KOS production.

Int J Biol Macromol

January 2025

Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China. Electronic address:

Konjac oligosaccharide (KOS) exhibits various biological activities, and hyperthermophilic β-glucanases offer many advantages for KOS production from konjac glucanmannan (KGM). In this study, a novel β-glucanase, EG003, belonging to the glycosyl hydrolase (GH) subfamily 5_1, was predicted from the genome of the a Thermus strain. The recombinant EG003 and its catalytic domain, EG003A, were successfully expressed and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!