High-Performance Ir/CeO Single-Atom Catalyst for the Oxidation of Toluene.

Inorg Chem

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China.

Published: April 2024

AI Article Synopsis

  • The study focuses on creating an effective catalyst for eliminating toluene, a volatile organic compound (VOC), due to rising emissions.
  • Researchers developed a single-atom Ir catalyst (Ir/CeO) using a straightforward method, which showed superior performance compared to a cluster version (Ir/CeO-C) in terms of stability and water resistance.
  • Various experiments indicated that Ir/CeO had unique structural benefits and lower energy barriers for oxidation reactions, offering valuable insights for improving catalysts aimed at VOC removal.

Article Abstract

The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir/CeO) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO-C), Ir/CeO exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H-TPR, O-TPD, and XPS experiments, abundant oxygen defects and a unique Ir-Ov-Ce structure were formed for the Ir/CeO sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir/CeO sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO catalysts for the highly efficient removal of VOCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c04589DOI Listing

Publication Analysis

Top Keywords

oxidation toluene
12
single-atom catalyst
8
ir/ceo sample
8
sample lower
8
ir/ceo
5
high-performance ir/ceo
4
ir/ceo single-atom
4
catalyst oxidation
4
toluene
4
toluene elimination
4

Similar Publications

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

Tailoring crystal facets of metal-organic frameworks to enhance sensing performance for aromatic vapors detection.

J Hazard Mater

December 2024

NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China. Electronic address:

It is well known that metals and metal oxides with different crystal facets exhibit varying sensitivity in gas sensors, but this strategy is rarely used in metal-organic frameworks (MOFs). Herein, we proved for the first time that Cu metal-organic with high energy crystal facets (Cu-MOF-74-300) shows a much higher sensitivity than the low energy crystal facets (Cu-MOF-74-110), with a up to 2 times response more than Cu-MOF-74-110 and ultra-low limit of detection (LOD) of 68 ppb to toluene vapors. In addition, this strategy was further demonstrated on MOF-14 and HKUST-1, which are also Cu-centered and exhibit clear recognition effects on benzene and xylene, respectively.

View Article and Find Full Text PDF

This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.

View Article and Find Full Text PDF

Unveiling the critical role of surface adsorbed oxygen species for efficiently photothermocatalytic oxidation of VOCs: Replenishing the active surface lattice oxygen sites.

J Hazard Mater

December 2024

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China; School of Life Science, Jinggangshan University, Ji'an 343009, China.

Surface oxygen species play a crucial role in the photothermocatalytic oxidation of volatile organic compounds (VOCs), but their exact functions and evolutionary processes remain unclear. Herein, a series of spinel CoMnO catalysts are synthesized and employed for photothermocatalytic oxidation of toluene. CoMnO catalysts achieve 91.

View Article and Find Full Text PDF

All-inorganic cesium lead halide (CsPbX, X = Cl, Br, I) perovskite quantum dots (PeQDs) are successfully incorporated within the cages of zirconium-based UiO-series metal-organic frameworks (MOFs) using in situ ship-in-a-bottle method at room temperature under ambient conditions. The resulting mBPP-MOF, which includes the 4,4'-(2,2'-bipyridyl-5,5'-diyl)dibenzoic acid (HBPP) linker, features a larger cavity size than UiO-66 and UiO-67-bpy, allowing for uniform accommodation of PeQDs within its cages. This PeQDs@MOF hybrid heterostructure enhances the separation and transfer of photogenerated charges, enabling the synthesized CsPbBr@mBPP-MOF to demonstrate highly selective and stable performance in the photocatalytic oxidation of toluene under visible light irradiation at 395 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!