Estimating the pollution loads in the Tuhai River is essential for developing a water quality standard scheme. This study utilized the improved output coefficient method to estimate the total pollution loads in the river basin while analyzing the influencing factors based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model. Findings indicated that the projected point source pollution loads for total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (AN) would amount to 3937.22 ton, 335,523.25 ton, and 13,946.92 ton in 2021, respectively. Among these, COD pollution would pose the greatest concern. The primary contributors to the pollution loads were rural scattered life, large-scale livestock and poultry breeding, and surface runoff. Per capita GDP emerged as the most influential factor affecting the pollution loads, followed by cultivated land area, while the urbanization rate demonstrated the least impact.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33107-1DOI Listing

Publication Analysis

Top Keywords

pollution loads
20
tuhai river
8
river basin
8
improved output
8
output coefficient
8
coefficient method
8
pollution
7
loads
5
pollution load
4
load estimation
4

Similar Publications

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area.

Sci Rep

January 2025

School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.

Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).

View Article and Find Full Text PDF

Novel Nanocomposites and Biopolymer-Based Nanocomposites for Hexavalent Chromium Removal from Aqueous Media.

Polymers (Basel)

December 2024

Department of Applied Chemistry and Engineering of Inorganic Compounds and the Environment, University Politehnica Timisoara, 2 Piata Victoriei, 300006 Timișoara, Romania.

Designing new engineered materials derived from waste is essential for effective environmental remediation and reducing anthropogenic pollution in our economy. This study introduces an innovative method for remediating metal-contaminated water, using two distinct waste types: one biowaste (eggshell) and one industrial waste (fly ash). We synthesized three novel, cost-effective nanoadsorbent types, including two new tertiary composites and two biopolymer-based composites (specifically k-carrageenan and chitosan), which targeted chromium removal from aqueous solutions.

View Article and Find Full Text PDF

The rational design of heterojunction photocatalysts enabling fast transportation and efficient separation of photoexcited charge carriers is the key element in visible light-driven photocatalyst systems. Herein, we develop a unique Z-scheme heterojunction consisting of NiMoO microflowers (NMOF) and ZIF67, referred to as ZINM (composite), for the purpose of antibiotic degradation. ZIF67 was produced by a solution process, whereas NMOF was synthesized via coprecipitation with a glycine surfactant.

View Article and Find Full Text PDF

The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (SmO) nanoparticles and ZnO-SmO nanocomposite (ZS) were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!