In recent years, the automotive industry has witnessed significant progress in the development of automated driving technologies. The integration of advanced sensors and systems in vehicles has led to the emergence of various functionalities, such as driving assistance and autonomous driving. Applying these technologies on the assembly line can enhance the efficiency, safety, and speed of transportation, especially at end-of-line production. This work presents a connected automated vehicle (CAV) demonstrator for generating autonomous driving systems and services for the automotive industry. Our prototype electric vehicle is equipped with state-of-the-art sensors and systems for perception, localization, navigation, and control. We tested various algorithms and tools for transforming the vehicle into a self-driving platform, and the prototype was simulated and tested in an industrial environment as proof of concept for integration into assembly systems and end-of-line transport. Our results show the successful integration of self-driving vehicle platforms in the automotive industry, particularly in factory halls. We demonstrate the localization, navigation, and communication capabilities of our prototype in a demo area. This work anticipates a significant increase in efficiency and operating cost reduction in vehicle manufacturing, despite challenges such as current low traveling speeds and high equipment costs. Ongoing research aims to enhance safety for higher vehicle speeds, making it a more viable business case for manufacturers, considering the increasing standardization of automated driving equipment in cars. The main contribution of this paper lies in introducing the general concept architecture of the integration of automated driving functionalities in end-of-line assembly and production systems. Showing a case study of the effective development and implementation of such functionalities with a CAV demonstrator in a more standardized industrial operational design domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997630 | PMC |
http://dx.doi.org/10.1038/s41598-024-58627-1 | DOI Listing |
Polymers (Basel)
January 2025
Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, West Xianning Road 28, Xi'an 710049, China.
The aim of this paper is to investigate the effect of TiC addition on the microstructure, microhardness, and wear resistance of the medium-entropy alloy Co37Cr28Ni31Al2Ti2, which is suitable for applications in aerospace, automotive, and energy industries due to its high strength and wear resistance. The samples containing 0, 10, 20, and 40 wt.% of TiC were synthesized.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Praha 6-Dejvice, 166 28 Prague, Czech Republic.
Maraging steel is a high-performance material valued for its exceptional properties, making it ideal for demanding applications such as aerospace, tooling, and automotive industries, where high strength, toughness, and precision are required. These steels can be prepared by powder metallurgy techniques, which offer new processing possibilities. This paper introduces novel thermal powder pre-treatment and its impact on the final mechanical properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research and Testing Institute Pilsen, 30100 Plzen, Czech Republic.
In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!