AI Article Synopsis

  • Cell-free protein synthesis (CFPS) systems are gaining popularity, but traditional detection methods like radioactive labeling and fluorescent tagging are often impractical due to safety, cost, and complexity issues.
  • We've developed FAST (Fluorescent Assembly of Split-GFP for Translation Tests), a new method using split GFP fragments that simplifies protein detection by fusing a small tag (GFP11) to proteins, resulting in a fluorescent signal when it interacts with another fragment (GFP1-10).
  • This method allows for quick and sensitive detection of synthesized proteins in various CFPS systems and can also be used to investigate how antibiotics inhibit translation in a straightforward manner.

Article Abstract

Cell-free protein synthesis (CFPS) systems offer a versatile platform for a wide range of applications. However, the traditional methods for detecting proteins synthesized in CFPS, such as radioactive labeling, fluorescent tagging, or electrophoretic separation, may be impractical, due to environmental hazards, high costs, technical complexity, and time consuming procedures. These limitations underscore the need for new approaches that streamline the detection process, facilitating broader application of CFPS. By harnessing the reassembly capabilities of two GFP fragments-specifically, the GFP1-10 and GFP11 fragments-we have crafted a method that simplifies the detection of in vitro synthesized proteins called FAST (Fluorescent Assembly of Split-GFP for Translation Tests). FAST relies on the fusion of the small tag GFP11 to virtually any gene to be expressed in CFPS. The in vitro synthesized protein:GFP11 can be rapidly detected in solution upon interaction with an enhanced GFP1-10 fused to the Maltose Binding Protein (MBP:GFP1-10). This interaction produces a fluorescent signal detectable with standard fluorescence readers, thereby indicating successful protein synthesis. Furthermore, if required, detection can be coupled with the purification of the fluorescent complex using standardized MBP affinity chromatography. The method's versatility was demonstrated by fusing GFP11 to four distinct E. coli genes and analyzing the resulting protein synthesis in both a homemade and a commercial E. coli CFPS system. Our experiments confirmed that the FAST method offers a direct correlation between the fluorescent signal and the amount of synthesized protein:GFP11 fusion, achieving a sensitivity threshold of 8 ± 2 pmol of polypeptide, with fluorescence plateauing after 4 h. Additionally, FAST enables the investigation of translation inhibition by antibiotics in a dose-dependent manner. In conclusion, FAST is a new method that permits the rapid, efficient, and non-hazardous detection of protein synthesized within CFPS systems and, at the same time, the purification of the target protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997616PMC
http://dx.doi.org/10.1038/s41598-024-58588-5DOI Listing

Publication Analysis

Top Keywords

fast method
12
protein synthesis
12
proteins synthesized
8
cfps systems
8
synthesized cfps
8
vitro synthesized
8
synthesized proteingfp11
8
fluorescent signal
8
fast
6
synthesized
6

Similar Publications

Purpose: We report a novel technique which enables to cut any kind of foldable lens and extract it using capsulorhexis forceps and a 1.2 mm single-use slit angled knife.

Methods: The technique consists in using the capsulorhexis forceps to mantain and stabilize the IOL in the anterior chamber, and while one hand holds the IOL in that way, the second hand introduces a 1.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

Introduction: Psoriasis is a chronic inflammatory skin disorder affecting millions worldwide. Dermoscopy and proximal nailfold capillaroscopy have emerged as valuable tools for understanding the pathophysiology and treatment response of psoriasis lesions.

Objectives: This study aimed to contribute to the limited literature on using dermoscopic findings to detect treatment effectiveness in patients with psoriasis vulgaris.

View Article and Find Full Text PDF

Objective: Transdermal alcohol concentration (TAC) sensors provide a multidimensional characterization of drinking events that self-reports cannot. These profiles may differ in their associated day-level alcohol-related consequences, but no research has tested this. We address this using multilevel latent profile analysis.

View Article and Find Full Text PDF

Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.

Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!