Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO-AgNPs. In the treatment with 0.01% AgNPs and TiO-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997752PMC
http://dx.doi.org/10.1038/s41598-024-56653-7DOI Listing

Publication Analysis

Top Keywords

agnps tio-agnps
20
cotton fabrics
12
treated tio-agnps
8
succinic acid
8
cross-linking agent
8
agnps
8
antimicrobial activities
8
mechanical characteristics
8
tio-agnps
7
treated
5

Similar Publications

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Reduction and amalgamation of mercury in silver nanoparticle suspensions under dark conditions.

Chemosphere

December 2024

Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL33199, United States. Electronic address:

Mercury (Hg) is a global pollutant of concern, and its transport and transformation are controlled by various environmental factors, with aquatic particles being an important driver. Understanding the interactions between silver nanoparticles (AgNPs) and Hg under dark condition is a prerequisite for studying the extent of AgNPs interaction with light and its participation in Hg biogeochemical cycling. Herein, under laboratory experimental setting, it was found that the reduction of divalent Hg (Hg(II)) to gaseous elemental Hg (Hg) by AgNPs readily occurred.

View Article and Find Full Text PDF

Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed.

View Article and Find Full Text PDF

Background: Recurrent caries were attributed to the lack of antibacterial properties of the dental materials. Silver nanoparticles (AgNPs) and calcium fluoride nanoparticles (CaF2NPs) are broad-spectrum antibacterial agents. The object of the study was to investigate the antibacterial properties of composite-incorporated AgNPs and CaF2NPs on .

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!