Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death.

J Med Chem

Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States.

Published: April 2024

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD biosynthesis via salvage of NAM formed from catabolism of NAD by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD in aging, neurodegeneration, and metabolic disorders is addressed by NAD supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056997PMC
http://dx.doi.org/10.1021/acs.jmedchem.3c02112DOI Listing

Publication Analysis

Top Keywords

nicotinamide phosphoribosyltransferase
8
nampt
8
phosphoribosyltransferase nampt
8
life death
8
channeling nicotinamide
4
nampt address
4
address life
4
death nicotinamide
4
nampt catalyzes
4
catalyzes rate-limiting
4

Similar Publications

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants caused by an imbalance between lung injury and lung repair in the developing immature lungs of the newborn. Pulmonary inflammation is an important feature in the pathogenesis of BPD. The aim of this study was to evaluate the relationship between the inflammatory microenvironment and the levels of visfatin and nesfatin-1, which are among the new adipocytokines, in BPD patients.

View Article and Find Full Text PDF

[Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes].

Zhongguo Zhong Yao Za Zhi

December 2024

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.

This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Visfatin Enhances RANKL-Induced Osteoclastogenesis In Vitro: Synergistic Interactions and Its Role as a Mediator in Osteoclast Differentiation and Activation.

Biomolecules

November 2024

Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.

Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro.

View Article and Find Full Text PDF

: The rapidly increasing rate of obesity has become an extremely important public health problem, particularly in developed countries. Obesity is associated with a range of health problems, often referred to as the metabolic syndrome. Adipose tissue is now regarded as an endocrine organ responsible for the hormonal secretion of adipokines, which are cytokines involved in various physiological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!