Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172141DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
emerging membrane-based
8
processes
8
process configurations
8
emerging processes
8
membrane-based processes
8
process
5
review emerging
4
membrane-based microalgal-bacterial
4
microalgal-bacterial processes
4

Similar Publications

Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of Polar Organic Chemical Integrative Samplers (POCIS) as a more effective method for monitoring pharmaceutical residues in wastewater compared to traditional grab sampling.
  • POCIS allows for continuous sampling over days or weeks, providing more representative data, though challenges remain in obtaining precise quantitative results due to calibration needs.
  • The research successfully identifies and calibrates sampling rates for 49 pharmaceuticals in a wastewater treatment plant near Barcelona, yielding high concentrations of specific compounds, thus establishing a methodology for better environmental monitoring of pharmaceuticals.
View Article and Find Full Text PDF

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Combining metagenomic sequencing and molecular docking to understand signaling molecule degradation characteristics of quorum quenching consortia.

Environ Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

Quorum quenching consortia (QQC) enriched by special substrates for bioaugmentation is a promising QQ technology to reduce biofouling, sludge yield, and sludge bulking. However, the effect of substrate type on the performance of QQC is still a research gap. This study selected three different substrates, regular AHLs (N-octanoyl-l-homoserine lactone, C8), 3-oxo-AHLs (3-oxo-octanoyl)-l-homoserine lactone, 3-oxo-C8), and AHLs analogs (γ-caprolactone, GCL) to enrich three QQC (C8-QQC, 3OC8-QQC, GCL-QQC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!