Soft interface confined DNA walker for sensitive and specific detection of SARS-CoV-2 variants.

Talanta

College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, 400021, China. Electronic address:

Published: July 2024

Nucleic acid detection is conducive to preventing the spread of COVID-19 pandemic. In this work, we successfully designed a soft interface confined DNA walker by anchoring hairpin reporter probes on cell membranes for the detection of SARS-CoV-2 variants. In the presence of target RNA, the cyclic self-assembly reaction occurred between hairpin probes H1 and H2, and the continuous walking of target RNA on cell membranes led to the gradual amplification of fluorescence signal. The enrichment of H1 on membranes and the unique fluidity of membranes promoted the collision efficiency between DNA strands in the reaction process, endowing this method with high sensitivity. In addition, the double-blind test of synthetic RNA in 5% normal human serum demonstrated the good stability and anti-interference in complex environment of this method, which exhibited great potential in clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126009DOI Listing

Publication Analysis

Top Keywords

soft interface
8
interface confined
8
confined dna
8
dna walker
8
detection sars-cov-2
8
sars-cov-2 variants
8
cell membranes
8
target rna
8
walker sensitive
4
sensitive specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!