N -n-butyl haloperidol iodide (F 2 ), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F 2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F 2 depends on Nrf2 using a mouse heart I/R model. F 2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 minutes before reperfusion. Systemic administration of 0.4 mg/kg F 2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F 2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F 2 -induced activation of Nrf2 is silent information regulator of transcription 1 (SIRT1)-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F 2 -upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F 2 against myocardial I/R injury and may provide new insights for the treatment of ischemic heart disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149939PMC
http://dx.doi.org/10.1097/FJC.0000000000001550DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
-n-butyl haloperidol
8
haloperidol iodide
8
sirt1-nrf2 signaling
8
signaling loop
8
activation nrf2
8
activation
6
nrf2
6
injury
5
i/r
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!