Virtual-State Model for Analyzing Electro-Optical Modulation in Ring Resonators.

Phys Rev Lett

Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China.

Published: March 2024

Ring resonators play a crucial role in optical communication and quantum technology applications. However, these devices lack a simple and intuitive theoretical model to describe their electro-optical modulation. When the resonance frequency is rapidly modulated, the filtering and modulation within a ring resonator become physically intertwined, making it difficult to analyze the complex physical processes involved. We address this by proposing an analytical solution for electro-optic ring modulators based on the concept of a "virtual state." This approach equates a lightwave passing through a dynamic ring modulator to one excited to a virtual state by a cumulative phase and then returning to the real state after exiting the static ring. Our model simplifies the independent analysis of the intertwined physical processes, enhancing its versatility in analyzing various incident signals and modulation formats. Experimental results, including resonant and detuning modulation, align with the numerical simulation of our model. Notably, our findings indicate that the dynamic modulation of the ring resonator under detuning driving approximates phase modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.123802DOI Listing

Publication Analysis

Top Keywords

modulation ring
12
electro-optical modulation
8
ring resonators
8
ring resonator
8
physical processes
8
modulation
7
ring
7
virtual-state model
4
model analyzing
4
analyzing electro-optical
4

Similar Publications

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

In chick embryos prior to primitive streak formation, the outermost extraembryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Just internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner, area pellucida epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent area pellucida epiblast.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands HL and HL were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. HL was obtained from the reaction of carbohydrazide and salicylaldehyde, while HL was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide.

View Article and Find Full Text PDF

The Min system is a key spatial regulator of cell division in rod-shaped bacteria and the first FtsZ negative modulator to be recognized. Nevertheless, despite extensive genetic and in vitro studies, the molecular mechanism used by MinC to inhibit Z-ring formation remains incompletely understood. The crystallization of FtsZ in complex with other negative regulators such as SulA and MciZ has provided important structural information to corroborate in vitro experiments and establish the mechanism of Z-ring antagonism by these modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!