A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Light-Matter Interaction in Metallic Nanoparticles: A Generic Strategy of Smart Void Filling. | LitMetric

The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036389PMC
http://dx.doi.org/10.1021/acs.nanolett.4c00810DOI Listing

Publication Analysis

Top Keywords

light-matter interaction
8
metallic nanoparticles
8
enhanced light-matter
4
interaction metallic
4
nanoparticles generic
4
strategy
4
generic strategy
4
strategy smart
4
smart void
4
void filling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!