Pathological calcifications, especially calcium phosphate microcalcifications (MCs), appear in most early breast cancer lesions, and their formation correlates with more aggressive tumors and a poorer prognosis. Hydroxyapatite (HA) is a key MC component that crystallizes in the tumor microenvironment. It is often associated with malignant breast cancer lesions and can trigger tumorigenesis . Here, we investigate the impact of additives on HA crystallization and inhibition, and how precancerous breast cells respond to minerals that are deposited in the presence of these additives. We show that nonstoichiometric HA spontaneously crystallizes in a solution simulating the tumor microenvironmental fluids and exhibits lump-like morphology similar to breast cancer MCs. In this system, the effectiveness of poly(aspartic acid) and poly(acrylic acid) (PAA) to inhibit HA is examined as a potential route to improve cancer prognosis. In the presence of additives, the formation of HA lumps is associated with the promotion or only minimal inhibition of mineralization, whereas the formation of amorphous calcium phosphate (ACP) lumps is followed by inhibition of mineralization. PAA emerges as a robust HA inhibitor by forming spherical ACP particles. When precancerous breast cells are exposed to various HA and ACP minerals, the most influential factors on cell proliferation are the mineral phase and whether the mineral is in the form of discrete particles or particle aggregates. The tumorigenic effects on cells, ranging from cytotoxicity and suppression of proliferation to triggering of proliferation, can be summarized as HA particles < HA aggregates < ACP particles < ACP aggregates. The cellular response to minerals can be attributed to a combination of factors, including mineral phase, crystallinity, morphology, surface texture, aggregation state, and surface potential. These findings have implications for understanding mineral-cell interactions within the tumor microenvironment and suggest that, in some cases, the byproducts of HA inhibition can contribute to disease progression more than HA itself.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c17717DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
breast cancer
12
disease progression
8
cancer lesions
8
tumor microenvironment
8
precancerous breast
8
breast cells
8
presence additives
8
inhibition mineralization
8
acp particles
8

Similar Publications

: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".

View Article and Find Full Text PDF

Comparative Study of Anti-COVID Mouthwash and Remineralization Agents on Dentinal Tubular Occlusion: An Study.

J Int Soc Prev Community Dent

December 2024

Assistant professor, Oral and Dental Disease Research Center, Department of Operative Dentistry, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran.

Aim: Tooth sensitivity caused by exposed dentin tubules is a common clinical problem requiring correct treatment methods. Owing to the spread of the COVID-19 virus, it has become common to use different mouthwashes, including 1.5% hydrogen peroxide (HP), before dental procedures.

View Article and Find Full Text PDF

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!