Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relying on global constraints, the resulting methods face two main problems: First, most of the equation systems they formulate are of high degree and must be solved using computationally expensive polynomial solvers. Some methods use polynomial reduction strategies to simplify the system, but this adds some phantom solutions. In any event, an additional mechanism is employed to pick the best solution, which adds to the computation without any guarantees on the reliability of the solution. Second, these methods formulate constraints between a pair of images. Even if there is enough motion between them, they may suffer from local degeneracies that make the resulting estimates unreliable without any warning mechanism. In this paper, we solve these problems for isometric/conformal NRSfM. We show that, under widely applicable assumptions, we can derive a new system of equations in terms of the surface normals, whose two solutions can be obtained in closed-form and can easily be disambiguated locally. Our formalism also allows us to assess how reliable the estimated local normals are and to discard them if they are not. Our experiments show that our reconstructions, obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also being faster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3383316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!