In the last 20 years, synthetic elastic modules have been introduced to the orthodontist. However, force decay of these materials has been a clinical problem and the purpose of this project was to evaluate the force decay patterns of three commercially available elastomeric products--Ormco Power Chain II, Rocky Mountain Energy Chain, and TP Elast-O Chain--in a simulated oral environment. Thermal-cycled samples experienced less force decay over a 21-day period than samples stored at 37 degrees C. Furthermore, statistical analysis confirmed that there was a highly significant difference (p less than 0.01) between the mean force exerted by short modules and long modules for each material. Overall, modules producing higher initial forces (short modules) underwent less force decay after 21 days than did modules producing lower initial force values (long modules). All materials exerted 216 to 459 grams of force initially. After 21 days of simulated tooth movement, the force exerted by the elastic modules was 70 to 230 grams--a significant reduction (p less than 0.001).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0002-9416(85)90197-6 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.
View Article and Find Full Text PDFJ Theor Biol
January 2025
Department of Biology, University of Maryland, College Park, 20742, MD, USA; Institut de Biologie, Ecole Normale Superieure, Paris, 75005, France; School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA. Electronic address:
Virus population dynamics are driven by counter-balancing forces of production and loss. Whereas viral production arises from complex interactions with susceptible hosts, the loss of infectious virus particles is often approximated as a first-order kinetic process. As such, experimental protocols to measure infectious virus loss are not typically designed to identify non-exponential decay processes.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
BIFOLD─Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany.
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Research Europe - Zurich, Rüschlikon, Zurich 8803, Switzerland.
The appearance of frontier molecular ion resonances measured with scanning tunneling microscopy (STM)─often referred to as orbital density images─of single molecules was investigated using a CO-functionalized tip in dependence on bias voltage and tip-sample distance. As model systems, we studied pentacene and naphthalocyanine on bilayer NaCl on Cu(111). Absolute tip-sample distances were determined by means of atomic force microscopy (AFM).
View Article and Find Full Text PDFJ Orthod Sci
November 2024
Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
Objectives: This study aimed to determine how three different energy drink types affected the force decay of three distinct brands of clear, short elastomeric chains over various time intervals.
Materials And Methods: In this study, 600 pieces of clear, short elastomeric chains from three brands were examined. The initial force was measured immediately using a digital scale and after 1, 7, 14, 21, and 28 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!