Achieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, this work proposes the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures. Through theory-guided reverse engineering, the final pneumatic matrix shows remarkable frequency tunability (2.64-18.0 GHz), moderate IR emissivity regulation (0.14 at 7-16.5 µm), rapid responsiveness (≈30 ms), wide-angle operation (>45), and excellent environmental tolerance. Additionally, the multiplexed pneumatic matrix enables over 14 programmable coding sequences that independently alter thermal radiation without compromising radar stealth, and allows multimodal camouflage switching between three distinct compatible states. The approach may facilitate the evolution of camouflage techniques and electromagnetic functional materials toward multispectral, adaptability and intelligence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202313939 | DOI Listing |
Lab Chip
September 2024
Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed.
View Article and Find Full Text PDFSensors (Basel)
April 2024
Sabanci University Nanotechnology and Application Centre (SUNUM), Sabanci University, Istanbul 34956, Turkey.
Ice detection poses significant challenges in sectors such as renewable energy and aviation due to its adverse effects on aircraft performance and wind energy production. Ice buildup alters the surface characteristics of aircraft wings or wind turbine blades, inducing airflow separation and diminishing the aerodynamic properties of these structures. While various approaches have been proposed to address icing effects, including chemical solutions, pneumatic systems, and heating systems, these solutions are often costly and limited in scope.
View Article and Find Full Text PDFAdv Mater
June 2024
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
Achieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, this work proposes the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures.
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FF, UK.
The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration for integration into a complete fully optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip devices is dependent on the support of a laboratory framework.
View Article and Find Full Text PDFPolymers (Basel)
October 2022
Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Korea.
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!