A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid Freezing and Cryo-SEM-EDS Imaging of Foraminifera (Unicellular Eukaryotes) Using a Conductive Viscous Cryogenic Glue. | LitMetric

Spatial distribution of water-soluble molecules and ions in living organisms is still challenging to assess. Energy-dispersive X-ray spectroscopy (EDS) via cryogenic scanning electron microscopy (cryo-SEM) is one of the promising methods to study them without loss of dissolved contents. High-resolution cryo-SEM-EDS has challenges in sample preparation, including cross-section exposure and sample drift/charging due to insulative surrounding water. The former becomes problematic for large and inseparable organisms, such as benthic foraminifera, a unicellular eukaryote playing significant roles in marine ecosystems, which often exceed the size limit for the most reliable high-pressure freezing. Here we show graphite oxide dispersed in sucrose solution as a good glue to freeze, expose cross-section by cryo-ultramicrotome, and analyze elemental distribution owing to the glue's high viscosity, adhesion force, and electron conductivity. To demonstrate the effectiveness and applicability of the glue for cryo-SEM-EDS, deep-sea foraminifer Uvigerina akitaensis was sampled during a cruise and plunge frozen directly on the research vessel, where the liquid nitrogen supply is limited. The microstructures were preserved as faithfully in cryo-SEM images as those with the conventional resin-substituted transmission electron micrograph. We found elements colocalized within the cytoplasm originating from water-soluble compounds that can be lost with conventional dehydrative fixation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mam/ozae026DOI Listing

Publication Analysis

Top Keywords

foraminifera unicellular
8
rapid freezing
4
freezing cryo-sem-eds
4
cryo-sem-eds imaging
4
imaging foraminifera
4
unicellular eukaryotes
4
eukaryotes conductive
4
conductive viscous
4
viscous cryogenic
4
cryogenic glue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!