Recent Advances in Photosensitizer Materials for Light-Mediated Tumor Therapy.

Chem Asian J

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350002, People's Republic of China.

Published: June 2024

Photodynamic therapy (PDT) as an emerging therapeutic method has drawn much attention in the treatment field for cancer. Photosensitizer, which can convert photon energy into cytotoxic species under light irradiation, is the core component in PDT. The design of photosensitizers still faces problems of light absorption, targeting, penetration and oxygen dependence. With the rapid progress of material science, various photosensitizers have been developed to produce cytotoxic species for treatment of tumor with high selectivity, safety, and noninvasiveness. Besides, the applications of photosensitizers have been expanded to diverse cancer treatments such as drug release, optogenetics and immune checkpoint blockade. In this review, we summarize the recent advances of photosensitizers in various therapeutic methods for cancer. Prevailing challenges and further prospects associated with photosensitizers are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202400268DOI Listing

Publication Analysis

Top Keywords

cytotoxic species
8
photosensitizers
5
advances photosensitizer
4
photosensitizer materials
4
materials light-mediated
4
light-mediated tumor
4
tumor therapy
4
therapy photodynamic
4
photodynamic therapy
4
therapy pdt
4

Similar Publications

The aim of this study is to demonstrate the enhanced efficiency of combined therapeutic strategies for the treatment of growing tumors, based on computational experiments of a continuous-level modeling framework. In particular, the tumor growth is simulated within a host tissue and treated as a multiphase fluid, with each cellular species considered as a distinct fluid phase. Our model integrates the impact of chemical species on tumor dynamics, and we model -through reaction-diffusion equations- the spatio-temporal evolution of oxygen, vascular endothelial growth factor (VEGF) and chemotherapeutic agents.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Background: Surgical site infections (SSIs) have been shown to increase patient morbidity and mortality, impact on quality of life and place a significant economic burden on healthcare systems worldwide. Irrigation using wound cleansing and antiseptic effective solutions during surgical procedures is a key part of SSI prevention. The optimal solution would have minimal cytotoxicity to the patient while maintaining a minimum concentration required for antimicrobial activity necessary to prevent opportunistic pathogens and biofilm formation.

View Article and Find Full Text PDF

An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.

View Article and Find Full Text PDF

Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis.

J Colloid Interface Sci

January 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu-coordinated MPDA (CMP) as the optimal nanocarrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!