AI Article Synopsis

  • Genetic variability plays a crucial role in differences in skeletal muscle mass, but the specific genes responsible are not well understood; this study focuses on Rps6ka6 and Pou3f4 genes located on chromosome X in mice.
  • The study involved analyzing muscle samples from male CFW mice with different alleles linked to muscle mass, revealing that the "increasing" allele led to larger muscle size and more muscle fibers, particularly in the fast-twitch extensor digitorum longus muscle.
  • Findings suggest that Rps6ka6 influences muscle fiber count in fast-twitch muscles, whereas the Pou3f4 gene impacts fiber numbers in slow-twitch muscles, indicating distinct genetic roles in muscle development.

Article Abstract

Genetic variability significantly contributes to individual differences in skeletal muscle mass; however, the specific genes involved in that process remain elusive. In this study, we examined the role of positional candidates, Rps6ka6 and Pou3f4, of a chromosome X locus, implicated in muscle mass variability in CFW laboratory mice. Histology of hindlimb muscles was studied in CFW male mice carrying the muscle "increasing" allele C (n = 15) or "decreasing" allele T (n = 15) at the peak marker of the locus, rs31308852, and in the Pou3f4y/- and their wild-type male littermates. To study the role of the Rps6ka6 gene, we deleted exon 7 (Rps6ka6-ΔE7) using clustered regularly interspaced palindromic repeats-Cas9 based method in H2Kb myogenic cells creating a severely truncated RSK4 protein. We then tested whether that mutation affected myoblast proliferation, migration, and/or differentiation. The extensor digitorum longus muscle was 7% larger (P < 0.0001) due to 10% more muscle fibers (P = 0.0176) in the carriers of the "increasing" compared with the "decreasing" CFW allele. The number of fibers was reduced by 15% (P = 0.0268) in the slow-twitch soleus but not in the fast-twitch extensor digitorum longus (P = 0.2947) of Pou3f4y/- mice. The proliferation and migration did not differ between the Rps6ka6-ΔE7 and wild-type H2Kb myoblasts. However, indices of differentiation (myosin expression, P < 0.0001; size of myosin-expressing cells, P < 0.0001; and fusion index, P = 0.0013) were significantly reduced in Rps6ka6-ΔE7 cells. This study suggests that the effect of the X chromosome locus on muscle fiber numbers in the fast-twitch extensor digitorum longus is mediated by the Rps6ka6 gene, whereas the Pou3f4 gene affects fiber number in slow-twitch soleus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075558PMC
http://dx.doi.org/10.1093/g3journal/jkae046DOI Listing

Publication Analysis

Top Keywords

muscle mass
12
extensor digitorum
12
digitorum longus
12
positional candidates
8
candidates rps6ka6
8
rps6ka6 pou3f4
8
skeletal muscle
8
mass variability
8
chromosome locus
8
rps6ka6 gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!